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Abstract

Fan noise is one of the principal noise sources generated by a turbofan aero-engine. At supersonic fan speeds, fan tones

are generated by the ‘‘rotor-alone’’ pressure field. In general, these tones can be well absorbed by an inlet duct acoustic

liner, apart from at high supersonic fan speeds. However, in practice inlet duct liners contain acoustically hard longitudinal

splices which cause scattering. This leads to acoustic energy being scattered into a range of different azimuthal mode

orders, similar to the modal content resulting from rotor–stator interactions. The effectiveness of an inlet duct lining is

reduced because acoustic energy is scattered into modes that are poorly absorbed by the liner. In this article, the effect of

this acoustic scattering is examined by three-dimensional finite-element simulations of sound transmission in a turbofan

inlet duct. Results include predictions of the sound power transmission loss with different splice widths, and at different

supersonic fan speeds. These results demonstrate how acoustic scattering by liner splices can adversely affect fan tone noise

levels at low supersonic fan speeds, but have little adverse affect on noise levels at high supersonic fan speeds. The potential

noise benefit that could be achieved by manufacturing thinner splices is also examined.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There has been considerable success over the past 50 years in reducing commercial aircraft engine noise
levels. Noise levels from modern turbofan aero-engines are lower than earlier generations of engine, owing
largely to the development of high-bypass-ratio turbofan engines that has led to significant reductions in jet
noise. However, the use of larger fans and inlet ducts means that fan noise generated by high-bypass-ratio
turbofan aero-engines is nowadays one of the principal engine noise sources.

There are several well-known fan tone noise sources, including ‘‘rotor-alone’’ tones and ‘‘rotor–stator’’
interaction tones. Tyler and Sofrin [1] describe in detail the source generation mechanisms. Rotor-alone tones
are due to the steady (in a frame of reference rotating with the fan), pressure field attached to a ducted fan. The
tones have frequencies that are multiples of the engine’s shaft rotation frequency, F. At subsonic fan
operating speeds, Mto1, the rotor-alone pressure field is cut-off; thus, rotor-alone tones are only an
important noise source at supersonic fan speeds. In modern turbofan engines, the fan speed is supersonic at
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A modal amplitude (Pa)
b duct radius (m)
B number of fan blades
BPF blade passing frequency (Hz)
c speed of sound ðms�1Þ
½C� damping matrix
d distance between fan plane and liner (m)
EO engine order
f frequency (Hz)
F engine shaft rotation frequency (Hz)
Ix axial intensity ðWm�2Þ
Imfg denotes imaginary part
Jm Bessel function of the first kind, order m

k acoustic wavenumber ðradm�1Þ
kb Helmholtz number (non-dimensional fre-

quency)
kx axial wavenumber ðradm�1Þ
½K� stiffness matrix
l liner length (m)
L duct length (m)
ðm; nÞ (azimuthal, radial) mode order
mc highest cut-on azimuthal mode order (o

fixed)
½M� mass matrix
Mt fan tip Mach number
Mx axial Mach number
n̂ unit normal (outward)
nc highest cut-on radial mode order (m and

o fixed)
Ns number of splices
p pressure (Pa)
PWL sound power level (dB)
r radial coordinate (m)
rpm revolutions per minute
R resistance (non-dimensional)
Refg denotes real part
s splice width (m)
SPL sound pressure level (dB)
t time (s)
u velocity ðms�1Þ
U axial mean flow ðms�1Þ

V number of stator vanes
W sound power (W)
x axial distance upstream of the fan (m)
x̂ unit normal (x-direction)
X reactance (non-dimensional)
Z specific acoustic impedance (non-dimen-

sional)

Greek letters

ax axial wavenumber, lined duct section
ðradm�1Þ

g adiabatic constant
G surface of the acoustic domain
DLAM least attenuated mode transmission loss

(dB)
DPWL sound power transmission loss (dB)
z cut-off ratio
y azimuthal coordinate (rad)
k radial wavenumber ðradm�1Þ
l acoustic wavelength (m)
m radial wavenumber, lined duct section

ðradm�1Þ
r density ðkgm�3Þ
f velocity potential ðm2 s�1Þ
c mode shape function
o angular frequency 2pf ðrad s�1Þ
O acoustic domain

Subscripts

m; n denotes mode ðm; nÞ
0 denotes mean value

Superscripts

0 denotes an acoustic quantity
^ denotes a harmonic quantity
+ denotes a right-running mode
� denotes a left-running mode
% denotes value of a parameter at model

scale
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high-power operating conditions, such as during take-off and climb. Rotor-alone tones are the principal
component of the so-called ‘‘buzz-saw’’ noise that is audible at high-power operating conditions.

Rotor–stator interaction tones are generated when the rotor blade wakes impinge on fixed stator vanes, or
vice versa. The tones have frequencies that are multiples of blade passing frequency (BPF). At subsonic fan
speeds, not all the components of the rotor–stator interaction pressure field will be cut-off. In modern
turbofan engines, the fan speed is subsonic at low-power operating conditions, such as during approach. At
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this low-power operating condition, the principal component of fan tonal noise is rotor–stator interaction
tones.

Typically, in modern turbofan engines the inlet duct contains acoustic lining, which absorbs
sound generated by the fan. This liner is usually manufactured in sections which each cover part
of the duct’s circumference. This facilitates the manufacture and installation of the lining inside the
nacelle. The sections are joined together by longitudinal strips or splices. The splices will be acoustically
hard. This means that there will be discontinuities in the acoustic impedance around the circumference of
the duct.

In this article the effect, at supersonic fan speeds, of acoustic scattering caused by liner splices is
examined. The area covered by the splices will be small, typically less than 5% of the total area of duct
wall covered by the liner. Although this reduction in lined area is small, the splices cause additional
azimuthal mode scattering. (Note that in general any non-uniformity in the inlet duct can cause scattering,
for example distortion in the mean-flow, or the presence of inlet probes.) It will be shown that liner
splices can significantly reduce the attenuation at supersonic fan speeds. This is because acoustic energy is
scattered out of the rotor-alone field, and energy in the scattered field is less well absorbed by the acoustic
liner.

The concept of non-uniform liners has been studied by several authors. For example, Lansing and Zorumski
[2] in 1973 and Unruh [3] in 1976 examined the transmission of sound in an axially segmented lined duct, using
mode-matching techniques. This type of axially segmented liner is of interest because it could be used to
increase the attenuation of fan tones at high supersonic fan speeds; this will be examined in a subsequent
article.

In a circular-section lined duct, with a circumferentially varying wall impedance, it is not possible to
separate r and y, in order to find analytic expressions for the modes of the duct. Watson [4] in 1981, and also
Fuller [5,6] in 1984, proposed an analytic solution to this type of problem. The wave equation was solved by
separating the x-dependence, and then expressing both the mode shapes cðr; yÞ and wall impedance ZðyÞ as
Fourier series expansions in y. Then, solutions can be found, in principle, by solving a system of
eigenequations.

In 2001 Elnady et al. [7], using a similar approach to Watson and Fuller, formulated a numerical scheme for
an arbitrary duct cross-section, with a circular central duct surrounded by a bulk absorber. The point-
matching method was used to ensure the solutions satisfied the boundary conditions at a specified number of
collocation points. More recently, they have applied this method to investigate the effect of hard strips in
(locally reacting) lined ducts for application to aircraft engines [8]. More recently, Wright [9] matched analytic
rigid-wall modes to modes in spliced liners that were obtained from a general purpose finite element (FE)
Helmholtz solver for the no-flow problem.

The first numerical calculations of sound transmission in a duct with a circumferentially varying liner
appear to have been by Watson [10] in 1977 and Astley et al. [11] in 1980. The results in Refs. [10] and [11]
were obtained by using the FE method. Watson carried out calculations for a three-dimensional rectangular
duct with no flow. Astley et al. formulated the problem for a uniform flow duct with arbitrary cross-section,
and a circumferentially varying lining. At that time, these types of calculations were restricted to low
frequencies, because the problem is not axisymmetric. For example, in Ref. [11] a circular duct calculation was
conducted at Helmholtz number, or reduced frequency, kb ¼ 1.

Examples of measurements of scattering by liner splices can be found in Rademaker et al. [12]. They
measured the scattered sound field in a model turbofan inlet duct, using a mode detection array located near
the exit plane. The inlet contained a locally reacting lining with 8 splices. The measurements in Ref. [12] clearly
show that at some fan speeds the sound field is dominated by scattered modes—the mode spacing is 8 equal to
the number of splices. At low supersonic fan speeds, the measured levels of the scattered modes were higher
than the rotor-alone component of the pressure field. However, at higher supersonic fan speeds the measured
levels of the rotor-alone modes were significantly higher, and exceeded the level of any scattered modes in the
inlet duct. These findings are examined in this article.

One of the main objectives of most of this previous work was to examine the potential benefit of using
circumferentially varying liners to increase attenuation of sound. There has been less work directly appli-
cable to current turbofan engines, and the scattering caused by discontinuities in the acoustic lining. The
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Fig. 1. Inlet duct geometry.
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objective of this article is to assess the acoustic scattering by splices (of different widths), at supersonic fan
speeds, in a lined inlet duct. Also, the noise benefit that a uniform lining with no splices could provide is
examined.1

2. Scattering by liner splices

A turbofan inlet duct can be modelled approximately by a circular-section cylindrical duct. An approximate
inlet duct geometry is shown sketched in Fig. 1. Take cylindrical polar coordinates ðr; y;xÞ such that the centre
of the duct is aligned with the x-axis, the fan plane is at x ¼ 0, the exit plane is at x ¼ L, and the duct wall is at
r ¼ b. The duct is lined from x ¼ d to d þ l. The acoustic lining contains Ns axial splices, each of width s,
positioned 2p=Ns radians apart around the duct’s circumference. Also, the duct contains a uniform mean flow
u0 ¼ U0x̂, with Mach number Mx ¼ U0=c0.

The sound field in a waveguide or duct is commonly expressed in terms of modes. It is convenient to
consider fan tones generated by a turbofan engine in terms of spinning modes (based on a circular-section
cylindrical duct). Assume that inside the duct, a harmonic noise source with frequency o generates a harmonic
pressure field, p0ðr; y;x; tÞ ¼ p̂ðr; y;xÞ expðiotÞ, which is determined by solving the convected Helmholtz
equation,

ik þMx

q
qx

� �2

p̂ ¼ r2p̂; k ¼ o=c0. (1)
1Some of the work in this article was presented at the 10th AIAA/CEAS Aeroacoustics Conference, see Ref. [13], Part I: Finite Element

Assessment.
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It is well known (e.g. as shown by Eversman [14]), that on separating the variables r, y and x the acoustic
pressure can be expressed as a Fourier–Bessel modal sum

p̂ðr; y;xÞ ¼
X1

m¼�1

X1
n¼1

ðp̂þm;n þ p̂�m;nÞ

¼
X1

m¼�1

X1
n¼1

ðAþm;nJmðkþm;nrÞeiðmy�kx
þ
m;nxÞ þ A�m;nJmðk�m;nrÞeiðmy�kx

�
m;nxÞÞ, ð2Þ

where

kx
�
m;n ¼

k

1�M2
x

�Mx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�M2

xÞ
k�m;n

k

� �2
s0

@
1
A. (3)

Each mode is identified by its azimuthal and radial order, m and n, denoted by subscript m; n. Note that þ;�
denote right- and left-running modes, respectively.

In a rigid-walled duct, at a fixed frequency, only a finite number of modes can propagate inside the duct and
transmit acoustic power. The number of propagating, or ‘‘cut-on’’, modes in a duct depends upon the
frequency o, the duct radius b, and the mean flow Mx. All the remaining modes will be ‘‘cut-off’’ and transmit
no acoustic power. Mode ðm; nÞ will be a propagating mode if its cut-off ratio zm;n41, where

zm;n ¼
kb

km;nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

q . (4)

If zm;n41, then the axial decay rate Imfkxm;ng is zero.
In an acoustically lined duct, the acoustic pressure also can be expressed by a Fourier–Bessel modal sum

(similar to Eq. (2)), but with different modal amplitudes A�m;n, and k�m;n, kx
�
m;n replaced with m�m;n, ax

�
m;n, to

distinguish between rigid and lined duct modes. (All the values of m and ax are complex.) It will be useful to
extend the normal use of the terms ‘cut-on’ and ‘cut-off’ also to describe modes in a lined duct. Modes which
are cut-off ðzo1Þ, or near cut-off ðz � 1Þ, typically are well absorbed by an acoustic lining. At higher values of
z (greater than one), the modes are more cut-on, and tend to be poorly absorbed by an acoustic lining. For a
fixed azimuthal mode order m, zm;14zm;24zm;3; . . . ; so in a lined duct, typically the axial decay rates,
Imfaxm;1goImfaxm;2goImfaxm;3g; . . . ; and ðm; 1Þ is the least attenuated mode.

At supersonic fan speeds, the rotor-alone pressure field can be modelled by modes spinning with the same
circumferential phase speed as the fan, which equals 2pF. The circumferential phase speed of a spinning mode
is o=m. Therefore, a rotor-alone tone with frequency m�F can be modelled by spinning modes with
azimuthal mode order m. The rotating fan’s circumferential phase speed will be supersonic only over a small
spanwise section of the blade, close to the blade’s tip. It follows that at the fan plane most of the acoustic
energy will be contained in modes with radial mode order n ¼ 1. This means that the fan tonal noise source
can be modelled, at frequency mF, by the rotor-alone mode ðm; 1Þ.

First, consider the sound power transmission loss in a uniformly lined duct with no splices. At each junction
between the rigid and lined duct sections there is acoustic scattering, caused by the change in impedance at the
wall. Energy is scattered between different modes. However, because the lining is uniform (axisymmetric
problem), for a given azimuthal mode order m, the scattering will be only between different radial modes.
With no liner splices, the transmitted modes at the exit plane will be ðm; 1Þ, ðm; 2Þ, ðm; 3Þ, etc.

The modal sound power W�
m;n is given by

W�
m;n ¼ 2p

Z b

r¼0

Ix
�
m;nrdr, (5)

i.e. the integral of the modal acoustic intensity Ix
�
m;n in the �x-direction over the cross-sectional area of the

duct. The form of the axial acoustic intensity is given by Morfey ([15, Eq. (16), p. 39]). This leads to

W�
m;n ¼ jA

�
m;nj

2w�m;n, (6)
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where

w�m;n ¼
pb2

2r0c0
jJmðkm;nbÞj2 1�

m

km;nb

� �2
" #

ð1þM2
xÞRefx�m;ng þMxð1þ jx

�
m;nj

2Þ

h i
(7)

and

x�m;n ¼
kx
�
m;n

k � kx
�
m;nMx

. (8)

At the fan and exit planes, as the duct wall is rigid, the power in each mode can be summed because the mode
shapes are orthogonal. Thus, here the sound power transmission loss, at frequency equal to mF, is defined as

DPWL ¼ 10 log10 Wþ
m;1

��
fan plane

XncðmÞ

n¼1

Wþ
m;n

��
exit plane

, !
dB. (9)

In the absence of liner splices, at a fixed azimuthal mode order m, acoustic energy can be only scattered into
higher radial mode orders, which will be nearer cut-off. Therefore, the main factor which determines the
transmission loss in the lined duct section will be the axial decay rate of the least attenuated mode, which is
assumed to be mode ðm; 1Þ. Hence, a simpler estimate of the transmission loss is defined as,

DLAM ¼ �20 Imfax
þ
m;1gl log10 e, (10)

which is based on the least attenuated right-running mode.
Now consider the sound power transmission loss in a uniformly lined duct with Ns splices each of width s.

In principle, the acoustic pressure can be expressed as

p̂ðr; y; xÞ ¼
X1
l¼1

Aþl c
þ
l ðr; yÞe

ið�ax
þ
l

xÞ
þ A�l c

�
l ðr; yÞe

ið�ax
�
l

xÞ; ð11Þ

where the mode shapes clðr; yÞ describe the acoustic field over a cross-sectional plane of the duct (see Refs.
[4–6]).

Scattering caused by liner splices can be significant because energy is scattered into different azimuthal and
radial mode orders. The transmitted modes will be comprised of azimuthal mode orders im� jNs, where i; j

are integers. These scattered modes are directly analogous to rotor–stator interaction modes, which Tyler and
Sofrin [1] showed are given by m ¼ iB� jV .

As before, assume that the incident mode at the fan plane is the rotor-alone mode ðm; 1Þ. Energy will be
scattered into azimuthal mode orders im� jNs. The scattered modes with jim� jNsjojmj will rotate with a
faster circumferential phase speed than the fan. The cut-off ratios of these scattered modes will be greater than
zm;1, so typically these scattered modes will be less well absorbed by the acoustic liner, compared with the
original rotor-alone mode.

Now the sound power transmission loss is defined as

DPWL ¼ 10 log10 Wþ
m;1

��
fan plane

Xmc

m¼�mc

XncðmÞ

n¼1

Wþ
m;n

��
exit plane

, !
dB. (12)

Compare Eqs. (9) and (12). With a spliced liner, if the rotor-alone modes are near cut-off, and well absorbed
by the acoustic lining, then at the exit plane the sound field is likely to be dominated by the non-rotor-alone
modes, that are generated by scattering caused by the splices.

3. Finite-element method

The acoustic field in the inlet duct was simulated using ACTRAN/AE, a finite/infinite-element code
produced by Free Field Technologies.2
2Free Field Technologies S.A., 16 place de l’Université, B-1348 Louvain-la-Neuve, Belgium. http://www.fft.be, info@fft.be.

http://www.fft.be
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The flow acoustic model is based on an irrotational mean flow. The fluid is a non-viscous, non-heat
conducting, perfect gas. It can be described by the following equations:

Continuity :
qr
qt
þ r � ðruÞ ¼ 0, ð13Þ

Momentum :
qu
qt
þ ðu � rÞu ¼ �

1

r
rp, ð14Þ

Equation of state : p ¼ p0

r
r0

� �g

. ð15Þ

The velocity u can be expressed in terms of a velocity potential f, where

u ¼ rf, (16)

because the flow is irrotational. Acoustic disturbances in the flow can be described by decomposing the
velocity potential

fðx; tÞ ¼ f0ðxÞ þ f0ðx; tÞ. (17)

The steady-state mean flow is given by

u0 ¼ rf0, (18)

where it is assumed that the acoustic velocity potential f05f0.
Harmonic acoustic disturbances are given by

f0ðx; tÞ ¼ f̂ðxÞ eiot. (19)

On combining Eqs. (13)–(15), f̂ðxÞ is found by solving the convected Helmholtz equation

io
r0
c20

ioþ u0 � r½ �f̂
� �

� r � r0rf̂�
r0
c20

u0 ioþ u0 � r½ �f̂
� �

¼ 0. (20)

Note that for uniform flow, u0 ¼ U0x̂, and Eq. (20) reduces to

ioþU0
q
qx

� �2

f̂ ¼ c20r
2f̂, (21)

which is equivalent to Eq. (1).
The FE method is based on a weak variational statement constructed by multiplying Eq. (20) by weight

function df̂, and integrating over the acoustic domain O:Z
O
r0 rf̂ � rdf̂�

u0

c0
� rf̂

� �
u0

c0
� rdf̂

� �� �
dO ð22Þ

þ io
Z
O

r0
c20

df̂ðu0 � rf̂Þ � f̂ðu0 � rdf̂Þ
� �

dO� o2

Z
O

r0
c20

f̂ df̂dO

¼

Z
G
df̂ r0rf̂�

r0
c20

iof̂þ u0 � rf̂
h i

u0

� �
� n̂dG. ð23Þ

The surface integral in Eq. (23) can be simplified because it is assumed that on G the mean flow is tangent to
the boundary surface, so u0 � n̂ ¼ 0. Also rf̂ � n̂ ¼ ûn, where ûn expðiotÞ is the acoustic particle velocity on G
(directed outwards). The surface integral is then calculated by using the impedance boundary condition
originally derived by Myers [16]:

ioûn ¼ fioþ u0 � r � n � ðn � ru0Þg
1

r0c0

p̂

Z

� �
on G. (24)

In general, the acoustic domain O is divided into an inner and outer domain. (Infinite elements are used for
the outer domain.) However, in this case only an inner domain is required. Conventional Galerkin FEs are
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Fig. 2. A typical cross-sectional mesh.
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used to discretize the acoustic domain. These take the form

f̂ðxÞ ¼
X

i

f̂iNiðxÞ, (25)

where f̂i is the value of f̂ at the ith node point, and Ni are the basis functions for each FE. The Galerkin
method uses these basis functions for the weight functions. This leads to a matrix equation which replaces
Eq. (23). The matrix equation is usually written in the form

ð�o2½M� þ io½C� þ ½K�ÞU ¼ F, (26)

where ½M�, ½C� and ½K� are referred to as the mass, damping and stiffness matrices, respectively, U is a vector
whose ith element is f̂i, and F is the force vector (determined by the boundary condition on G). Full details of
the FE procedure can be found in the ACTRAN user manual [17].

The ACTRAN/AE mesh was generated using the ICEM3 CFD 4.1 package. The cross-section was meshed
with a mixture of quadrilateral and triangular elements with a resolution of eight nodes per wavelength l. All
the elements are quadratic. A typical cross-sectional mesh is shown in Fig. 2. This mesh was then extruded
along the duct, with the depth of each layer being such that the axial resolution was ten nodes per wavelength,
when reduced by a factor of ð1�MxÞ to account for the effect of flow.

The mean flow u0 is calculated separately, and then interpolated onto the mesh used by ACTRAN/AE. In
this case the mean flow is uniform, so no extra calculation of the flow, (using for example a CFD code), was
required.

A particular feature of ACTRAN/AE, which makes it suitable for this type of duct acoustics problem, is
that duct boundary conditions can be specified in terms of modes. The fan and exit planes are shown in Fig. 1.
At each plane, modes propagating in either direction can be specified to be fixed (at a particular amplitude) or
free.

At the fan plane, the amplitudes of the right-running incident modes are specified, and all the left-running
reflected modes are free. At the exit plane, all the right-running transmitted modes are free; no left-running
modes were specified, corresponding to an anechoic termination. The number of modes used was specified, the
criterion being that modes whose cut-off ratio z40:9 were included. This means that some evanescent modes
will be included; these will be modes which decay axially but sufficiently slowly that they may be significant
due to the short distance d between the fan, or exit plane, and the liner.

A post-processing routine was used to calculate the modal sound powers from the amplitudes of the
transmitted and reflected waves. As discussed in Section 2, the transmitted power can be determined by
summing the power in all the cut-on modes because the mode shapes are orthogonal.
3http://www.icemcfd.co.uk/

http://www.icemcfd.co.uk/
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The method was calibrated by comparing results for a uniform lining with no splices against results from a
mode-matching procedure. This validation test case is included in the results, see Section 5. (Full details of the
mode-matching procedure will be included in a subsequent article on acoustic scattering by an axially
segmented liner.)

The only other similar FE calculations for a turbofan inlet duct liner appear to be by Regan and Eaton [18].
Their results demonstrate the suitability of using the FE method for modelling sound transmission in a lined
inlet duct containing splices.

This type of FE method tends to scale poorly with frequency, prohibiting its use at high frequencies. In a
real turbofan engine the non-dimensional frequency kb of the BPF tone, at supersonic fan speeds, is likely to
be between 30 and 40. Three-dimensional FE simulations at realistic BPFs are extremely costly, both in CPU
time and memory.4 In this article, in order to reduce the computational cost, a model-scale problem is
examined. Numerical simulations of acoustic scattering and transmission in a three-dimensional lined duct
have been conducted at a kb corresponding to about 1

2
BPF. The aim is to use a model-scale problem that

preserves most of the physics of the original (full-scale) problem, so that meaningful results applicable to a real
turbofan engine can be obtained from computations at a reduced frequency.
4. Specification of the problem

A heuristic scaling procedure is proposed in order to reduce the Helmholtz number kb used in the FE
simulations. A model-scale (reduced frequency) problem is used to simulate realistic supersonic fan operating
conditions, the aim being to preserve most of the physics of the full-scale problem.

The scattering and transmission of sound in a lined turbofan inlet duct containing splices is modelled by
using the inlet duct geometry shown in Fig. 1. The values of the parameters used in this analysis are listed in
Table 1. These values are realistic for a modern high-bypass-ratio turbofan aero-engine.

Table 2 lists the details of the two supersonic fan speeds, ‘‘cut-back’’ and ‘‘sideline’’, used in this analysis.
The maximum rpm (100% fan speed) is 4600. Thus Mt41 at fan speeds above 70%. The nominal ‘‘cut-back’’
and ‘‘sideline’’ fan speeds are close to 80% and 90%. The incident sound field is modelled, at frequency
m�F, by the rotor-alone mode ðm; 1Þ. The values of BPF ðB�FÞ, and the cut-off ratio of mode ðB; 1Þ, at
cut-back and sideline, also are listed in Table 2.

The acoustic liner is a locally reacting single-layer cavity lining. The non-dimensional specific acoustic
impedance5 of the lining is

Z ¼ Rþ iX . (27)

The values of Z used in this analysis are 2:50þ 0:57 i at cut-back, and 3:00þ 1:00 i at sideline. The resistance R

is taken to be independent of the frequency. Realistic values of R are specified. The reactance X is dependent
on the frequency, so values for BPF are specified. At cut-back, the cut-off ratio of mode ðB; 1Þ is zB;1 ¼ 1:10, so
as the mode is near cut-off, it should be well absorbed by the lining. At sideline, mode ðB; 1Þ should be less well
absorbed by the lining, as its cut-off ratio is zB;1 ¼ 1:36. Thus, values of X are specified, so that for a uniform
lining (with no splices), DLAM is about 40 dB at cut-back, and about 10 dB at sideline. This is a realistic
difference in the values of the transmission loss at cut-back and sideline.

In terms of the acoustic pressure, a reduction of 40 dB means that the pressure is reduced by a factor of 100.
With a transmission loss of up to 40 dB, the correct modal amplitudes at the exit plane could be determined
from the FE simulations. In principle, acoustic energy should only be scattered into azimuthal mode orders
im� jNs. Using the FE method, a small amount of energy is scattered (by the numerical scheme) into other
mode orders. The amplitudes of these modes will be much lower than the amplitudes of the liner scattered
modes, unless the transmission loss is significantly larger than 40 dB, in which case it may be difficult to resolve
the correct levels at the exit plane.
4In Ref. [18] there is only one computation at a frequency close to that generated by a real turbofan (at kb ¼ 20).
5The acoustic impedance has been non-dimensionalized by dividing by r0c0 ðc0 ¼ 340ms�1 and r0 ¼ 1:2 kgm�3Þ.
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Table 1

Inlet duct specification (full-scale problem)

Number of fan blades B 24

Duct radius b 1.0m

Duct length L 1.1m

Liner length l 0.8m

Rigid-walled section d 0.15m

Number of splices Ns 4

Splice width s 0; 20; 30; 40; 50; 60mm

Table 2

Fan operating conditions (full-scale problem)

Fan speed Mx Mt BPF (Hz) kb zB;1

Cut-back �0.40 1.11 1440 26.6 1.10

Sideline �0.50 1.29 1680 31.0 1.36

A. McAlpine, M.C.M. Wright / Journal of Sound and Vibration 292 (2006) 911–934920
So, the prescribed values of the reactance also were selected because this should ensure that the maximum
transmission loss would not exceed 40 dB for any of the spliced liner simulations. Note that this means the
prescribed values of Z are not equal to the Cremer optimum impedance.

The model-scale problem is specified as follows. The key step is to halve the number of fan blades, i.e.
B! B% ¼ 1

2
B,6 and to reduce the fan rpm speed such that the cut-off ratio of the BPF mode ðB; 1Þ is the same

at full and model scale. This approximately halves BPF at model scale. Preserving zB;1 is crucial to ensure that
the attenuation at full and model scale are about the same.

In the model-scale problem s, Ns and Z are also changed. The splice width s is increased such that ks is
preserved. This ensures that the effect of changing the splice width can be predicted at model scale. The
number of splices Ns is also halved, i.e. Ns ! N%

s ¼
1
2

Ns. This ensures that the ratio of rotor-alone to
scattered azimuthal mode order, B=ðB� jNsÞ, is preserved.

A different acoustic impedance is used at model scale, the aim being to adjust the impedance from Z to Z%,
so that if the lining is uniform with no splices, then the decay of mode ðB; 1Þ would be the same at full and
model scale. The new acoustic impedance is determined by searching the complex impedance plane, to find Z%

such that the axial phase speed and axial decay rate of mode ðB; 1Þ are matched. This requires Refax
þ
B;1=kg and

Imfax
þ
B;1g to be matched at full and model scale.

The remaining variables b, Mx, L and l are unchanged. This ensures that the mass flow in the full- and
model-scale problem is the same. A comparison of the inlet ducts used at full and model scale are shown
sketched in Fig. 3.

It is assumed that there exists a suitable impedance Z% to be used at model scale. The choice of Z% is based
on the axial wavenumber axB;1 for a uniformly lined duct, because in practice the axial wavenumbers for a
spliced liner in Eq. (11) are not known. The equivalent value of ax, for the rotor-alone component of the
pressure field in a lined duct containing splices, is assumed to be similar to axB;1. The inherent assumption is
that splices cause scattering, but that this does not significantly alter the structure of the rotor-alone
component of the acoustic pressure field.

A suitable value of Z% is found by searching the complex impedance plane to minimize

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRefax

þ
B;1=k � ax

þ
B;1

%
=k%
gÞ

2
þ ðImfax

þ
B;1 � ax

þ%

B;1gÞ
2

q
. (28)

Figs. 4 and 5 are contour plots of �log10 h in the Z ¼ ðR;X Þ-plane, at the cut-back and sideline fan speeds,
respectively. In each case, an impedance to use for the model-scale problem is located.
6Note that % denotes the value at model scale.
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In this article results of FE simulations of liner scattering, at supersonic fan speeds, are examined. The
simulations are conducted at a reduced BPF, by halving the number of fan blades. In light of this, the
following results and discussion (Sections 5 and 6), apply to the model-scale problem. How well the results at
model scale compare with at full scale is discussed in Appendix A.

5. Results

The results in this article show predictions of the attenuation of fan tone noise by a spliced liner. The two
principal objectives of this study are to investigate how the attenuation is affected by: (1) fan speed; (2) splice
width. Also, the aim is to assess the potential noise benefit that could be gained by manufacturing a uniform
acoustic lining with no splices. At the cut-back and sideline fan speeds, the scattering and transmission of the
BPF mode ðB; 1Þ is simulated, for an inlet duct containing a uniform lining with no splices, and a uniform
lining with splices of width s ¼ 20260mm (full-scale values).
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In all the simulations, at the fan plane the prescribed sound power of the right-running incident mode ðB; 1Þ
is 147.8 dB, see Fig. 6.7 At full scale, this corresponds to an equivalent sound pressure level (SPL) of 170 dB,
which is a realistic level of the BPF tone.

In Fig. 7, the effect of scattering by the liner splices, is shown for several different examples. In each case, the
predicted sound powers of all the right-running modes at the exit plane are shown. Then, in Figs. 8 and 9, the
variation of the azimuthal modal sound powers with splice width, at the cut-back and sideline fan speeds,
are shown. Comparison of Figs. 8 and 9 illustrates two important findings: how the results change at different
fan speeds, and how the scattering is affected by the width of the splices. This is also shown in Fig. 10 which
plots how each azimuthal modal sound power level varies with splice width, at the two supersonic fan speeds.
7Absolute levels are shown.
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Finally, in Fig. 11 the variation in sound power transmission loss with splice width is shown, at the cut-back
and sideline fan speeds. The values of DPWL are also listed in Table 3. This includes the case of a uniform lining
with no splices ðs ¼ 0mmÞ. Note that with a uniform liner, there is close agreement between the FE and mode-
matching results. The example of a zero thickness splice has been used to check the accuracy of the FE code.
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Table 3

Model-scale results. Variation in sound power transmission loss with splice width—cut-back and sideline fan speeds

Cut-back Sideline

Splice width (mm) DPWL (FEM) (dB) DPWL (mode-

matching) (dB)

Splice width (mm) DPWL (FEM) (dB) DPWL (mode-

matching) (dB)

0 40.5 40.1 0 10.2 10.0

20 36.9 — 20 10.2 —

30 34.2 — 30 10.1 —

40 31.7 — 40 10.0 —

50 29.6 — 50 9.9 —

60 27.7 — 60 9.8 —
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Fig. 11. Model-scale results. Variation in sound power transmission loss with splice width. Key: &, cut-back; n, sideline.
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6. Discussion

It is seen in Fig. 7 that the liner splices are predicted to scatter the acoustic energy into all the cut-on modes.
The sign of m denotes whether the mode is spinning clockwise or counterclockwise. The cut-off ratios for �m

are equal, therefore the symmetry seen in the modal distributions about m ¼ 0 is not surprising. However, it is
seen in Figs. 8–10 that the azimuthal modal sound power levels are dependent on the fan speed and splice
width.

At cut-back, the rotor-alone pressure field is near cut-off. Therefore, the rotor-alone modes ðm ¼ BÞ are well
absorbed by the acoustic liner. It is seen in Fig. 8 that, at m ¼ B, the sound power levels at the exit plane are
almost independent of the splice width. At cut-back, DPWL at m ¼ B is between 39.7 and 40.2 dB with a spliced
liner (see Fig. 8), and 40.5 dB with a uniform liner (see Table 3). The liner splices only have a very small effect
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on the attenuation of the rotor-alone modes, but they cause scattering into non-rotor-alone modes, with
azimuthal mode orders maB.

Scattered modes, with jmjoB, are more cut-on than the rotor-alone field, so less well absorbed by the
acoustic liner. At each azimuthal mode order, the least attenuated mode will have radial order n ¼ 1. In
Table 4 there is comparison of the least attenuated modes at cut-back. (Details are provided at full and model
scale. The comparison between full- and model-scale results is discussed in Appendix A.) At model scale,
compare the cut-off ratios and axial decay rates of the scattered modes, with the rotor-alone mode, i.e.
compare ð0; 1Þ to ð10; 1Þ with ð12; 1Þ. The attenuation of the scattered modes, apart from jmj ¼ 10, is likely to
be small. This is confirmed by the results shown in Fig. 8. Azimuthal mode orders jmj ¼ 0 to j8j have similar
sound power levels. It is seen that for these azimuthal mode orders, it is the splice width, not the mode order,
that is the most significant factor. The sound power levels range from about 110 dB (thick splice) to about
100 dB (thin splice).

At the exit plane, the composition of the BPF tone will be comprised of modes caused by scattering, and the
original rotor-alone modes generated by the fan. In general, at low supersonic fan speeds, as the rotor-alone
pressure field is near cut-off, the scattered modes will be a significant source of tonal noise. The sound power
levels of the scattered modes can be reduced by having thinner splices. So at the cut-back fan speed, reducing
the splice width is predicted to increase the sound power transmission loss at BPF, see Table 3.

At sideline, the rotor-alone pressure field is well cut-on. Therefore, rotor-alone modes ðm ¼ BÞ are poorly
absorbed by the acoustic liner. At sideline, DPWL at m ¼ B is 10.1 dB with a spliced liner (see Fig. 9), and
10.2 dB with a uniform liner (see Table 3). So, also at this higher fan speed, the liner splices only have a very
small effect on the attenuation of the rotor-alone modes.

However, the scattered modes ðjmjoBÞ also are well cut-on, and poorly absorbed by the acoustic liner. A
comparison of the least attenuated modes at sideline is listed in Table 5. At the exit plane, the sound power
levels of the scattered modes, predicted for each different splice width, are on average slightly higher at sideline
Table 5

Full- and model-scale results. Comparison between the least attenuated modes ðn ¼ 1Þ at full and model scale—sideline fan speed

Full scale Model scale

ðm; nÞ zm;n Refaþx =kg Imfaþx g DLAM (dB) ðm; nÞ zm;n Refaþx
%=k%

g Imfaþx
%
g DLAM (dB)

ð24; 1Þ 1.36 1.4417 �1.5668 10.9 ð12; 1Þ 1.36 1.4418 �1.5667 10.9

ð20; 1Þ 1.61 1.6200 �0.8555 5.9 ð10; 1Þ 1.60 1.6025 �1.0716 7.4

ð16; 1Þ 1.98 1.7516 �0.4822 3.4 ð8; 1Þ 1.96 1.7263 �0.7148 5.0

ð12; 1Þ 2.58 1.8499 �0.2626 1.8 ð6; 1Þ 2.52 1.8234 �0.4454 3.1

ð8; 1Þ 3.72 1.9217 �0.1274 0.9 ð4; 1Þ 3.55 1.8987 �0.2462 1.7

ð4; 1Þ 6.74 1.9704 �0.0459 0.3 ð2; 1Þ 6.18 1.9541 �0.1076 0.7

ð0; 1Þ — 1.9971 �0.0044 0.03 ð0; 1Þ — 1.9900 �0.0228 0.16

Table 4

Full- and model-scale results. Comparison between the least attenuated modes ðn ¼ 1Þ at full and model scale—cut-back fan speed

Full scale Model scale

ðm; nÞ zm;n Refaþx =kg Imfaþx g DLAM (dB) ðm; nÞ zm;n Refaþx
%=k%

g Imfaþx
%
g DLAM (dB)

ð24; 1Þ 1.10 0.7788 �5.8036 40.3 ð12; 1Þ 1.10 0.7775 �5.8053 40.3

ð20; 1Þ 1.31 1.0986 �2.1158 14.7 ð10; 1Þ 1.30 1.0003 �2.8630 19.9

ð16; 1Þ 1.61 1.3098 �0.9929 6.9 ð8; 1Þ 1.58 1.2161 �1.3190 9.2

ð12; 1Þ 2.09 1.4562 �0.4870 3.4 ð6; 1Þ 2.04 1.3874 �0.6222 4.3

ð8; 1Þ 3.01 1.5585 �0.2218 1.5 ð4; 1Þ 2.88 1.5116 �0.2902 2.0

ð4; 1Þ 5.46 1.6261 �0.0769 0.5 ð2; 1Þ 5.01 1.5981 �0.1148 0.8

ð0; 1Þ — 1.6627 �0.0073 0.05 ð0; 1Þ — 1.6519 �0.0230 0.16
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compared with at cut-back (see Fig. 10; also compare Figs. 8 and 9). At sideline, the azimuthal modal sound
power levels range from about 116 dB (thick splice) to about 105 dB (thin splice). This is because at sideline,
owing to the increase in fan speed, there are more cut-on modes, and the modes’ cut-off ratios are higher,
compared with at cut-back.

At the exit plane, the sound power level at m ¼ B is over 20 dB higher than the corresponding levels of
modes with jmjoB. In general, at high supersonic fan speeds, as the rotor-alone pressure field is well cut-on,
the scattered modes will not be a significant source of tonal noise, because the dominant modes are the rotor-
alone m ¼ B components of the BPF tone. Although the levels of the scattered modes are reduced by having
thinner splices, at the sideline fan speed, this is not predicted to increase the sound power transmission loss at
BPF, see Table 3.

The sound power transmission losses listed in Table 3, and plotted in Fig. 11, show that at the cut-back fan
speed, the predicted transmission loss is higher with thinner splices. As the splice width is reduced from 60 to
20mm, DPWL varies from 27.7 to 36.9 dB, and with no splices DPWL is about 40 dB. (The FE method is not
suitable to be used to examine the limiting case as ks! 0, because of the difficulties associated with mesh
resolution with very thin splices. Therefore, it is not known how the scattered modes would be affected by very
thin splices, i.e. ks51.) At the sideline fan speed, the predicted transmission loss is not higher with thinner
splices. At this higher speed, DPWL varies from 9.8 to 10.2 dB as the splice width is reduced from 60 to 20mm,
and with no splices DPWL is also about 10 dB. The potential benefit of using thinner splices to reduce
supersonic fan tone noise is only apparent at low supersonic fan speeds, not at higher supersonic fan speeds.

These findings are consistent with the measured results reported in Rademaker et al. [12]. At low supersonic
fan speeds, one of the principal fan tone noise sources is caused by scattering, not the original rotor-alone
modes generated by the supersonic fan. However, at higher supersonic fan speeds the principal fan tone noise
source is the rotor-alone pressure field. Although there is scattering, the dominant noise source is the rotor-
alone modes, because the rotor-alone pressure field is poorly attenuated by the acoustic lining.

The sound power levels of the scattered modes could also be reduced by decreasing the level of the sound
incident on the liner. This could be achieved by two methods: the inclusion of a short section of uniform lining
with no splices close to the fan, or by increasing the distance between the fan plane and the start of the spliced
liner (length d in Fig. 1). The inclusion of a short section of lining with no splices near the fan will reduce the
level of sound incident on the spliced liner, without generating additional scattering. Alternatively, by simply
having a section of the duct near the fan with no lining could lead to a reduction in tone noise. This is because
with no splices, scattering would be eliminated close to the fan. This is in the region where there is the highest
in-duct sound pressure level, so the sound field will still be attenuated by nonlinear effects, because of the high
pressures in this region. However, the benefit of increasing the length d is limited because the rate of nonlinear
attenuation decreases with distance from the fan, and also a smaller area of the duct wall will be lined, which is
likely to reduce the attenuation of other noise sources.
7. Conclusions

Three-dimensional finite-element (FE) simulations are difficult to perform at high frequencies because the
problem size becomes prohibitively large with increasing frequency. Therefore, in this article a model-scale
problem is proposed. Three-dimensional FE simulations are conducted at a reduced frequency.

The simulations of scattering and transmission in an acoustically lined turbofan inlet duct appear to show
realistic results for a spliced liner. The numerical results show the same trends as the measurements reported in
Ref. [12]: that the relative importance of the liner scattered modes is dependent on the fan speed.

At supersonic fan speeds, the rotor-alone pressure field’s cut-off ratio z41. At cut-back, the rotor-alone
field is near cut-off: scattered modes are predicted to be a principal fan tone noise source. The level of the
scattered modes can be significantly reduced by having thinner splices. However, at sideline, the rotor-alone
field is well cut-on. At this fan speed, the rotor-alone modes are predicted to remain the principal fan tone
noise source. The level of the scattered modes at sideline can be reduced with thinner splices. However, at high
fan speeds, thinner splices are not predicted to lead to an increase in the overall sound power transmission loss.
This is because the rotor-alone pressure field is well cut-on, and poorly absorbed by the duct liner.
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At high fan speeds, more novel noise control methods are required to significantly improve the attenuation.
A novel axially segmented liner, which is predicted to improve the attenuation of fan tones at high supersonic
fan speeds, will be examined in a subsequent article on acoustic scattering at supersonic fan speeds.
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Appendix A. Comparison of results at full and model scale

The key difference between the full- and model-scale problems is that the Helmholtz number is not
preserved. The aim, using a reduced frequency model-scale problem, is not to replicate the in-duct acoustic
pressure field that would be calculated at full scale. Clearly, the number of cut-on modes and the mode shapes
are different at model and full scale, so there is no expectation that the acoustic pressure will be the same in the
two problems. Instead, the aim is to mimic one aspect of the acoustic transmission using the model-scale
problem; namely, to predict the sound power levels, at each azimuthal mode order, and how these levels vary
with different splice widths. It follows that the realistic prediction of the azimuthal modal sound power levels,
also should ensure that a realistic value of the sound power transmission loss is predicted.
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Fig. 12. Full- and model-scale results. Comparison between the least attenuated modes ðn ¼ 1Þ at full and model scale. The values of zm;1

and DLAM are also listed in Tables 4 and 5. Key: dashed line, full scale; solid line, half-scale; &, cut-back; n, sideline.
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In Section 4, the choice of Z% is determined by matching the rotor-alone mode ðB; 1Þ at full and model scale.
The other relevant modes are at azimuthal mode orders m ¼ B�Ns, B� 2Ns, etc. It would be more difficult
to find a value of Z% that accurately matched a prescribed set of modes. Although, mode ðB; 1Þ is matched at
full and model scale, how do the scattered modes compare?

It is assumed that, at each azimuthal mode order, the sound power level is mainly dependent on the least
attenuated mode, which is radial mode order n ¼ 1. In Tables 4 and 5 the least attenuated modes, at full and
model scale, are compared at the cut-back and sideline fan speeds, respectively. The sound power levels will
depend on how well the scattered modes are absorbed by the acoustic liner. At each azimuthal mode order, the
cut-off ratio zm;1 and transmission loss DLAM, of the least attenuated modes, at full and model scale and at
both fan speeds, are shown plotted in Fig. 12. There is a close correlation between the full- and model-scale
values of zm;1, and similarly between the values of DLAM.

As well as the close agreement between the full- and model-scale values of zm;1 and DLAM; also, at low
azimuthal mode orders, the values of DLAM are small because of the high values of the cut-off ratio. These are
the two crucial factors which suggest that it is possible to calculate, at a reduced frequency, realistic azimuthal
modal sound power levels. From the work of Rice, e.g. see Refs. [19–21], it is well known that sound
attenuation in a lined duct is dependent on the modes’ cut-off ratios, in addition to the wall impedance Z. In a
lined duct, well cut-on modes tend to be poorly absorbed, regardless of the value of Z. This is illustrated in
Figs. 13 (full scale) and 14 (model scale), which show how DLAM varies with Z, for different azimuthal mode
orders, at the cut-back fan speed.

Compare the contour plots at full and model scale, i.e. m ¼ 24 and 12; m ¼ 16 and 8; m ¼ 8 and 4; and
m ¼ 0. The shape of the contours are similar, but not the same at full and model scale. However, the contour
levels are comparable at full and model scale. Also, note that all these levels are relatively low, compared with
the values at m ¼ 24 or 12. The values of Z and Z%, at the cut-back fan speed, are shown in Figs. 13 and 14.
The choice of Z% will determine the axial decay rates of the rotor-alone and the scattered modes. The low-
order azimuthal modes have high cut-off ratios, so the predicted values of DLAM are small, over a wide range
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of possible values of the impedance. Therefore, the choice of Z% is less significant for the scattered modes,
compared with the rotor-alone mode, whence it is crucial that the correct axial decay rate is utilized at model
scale.

In order to provide additional evidence of the suitability of using this model-scale problem, it is necessary to
calculate a benchmark example at full scale, to permit a direct comparison between results at full and model
scale. In this example a FE simulation at full scale has been performed, but only at cut-back ðkb ¼ 26:6Þ. The
example is based on the full- and model-scale problems already defined. However, to enable the FE
simulations to be run on a high-performance PC, the length of the inlet duct is halved in order to reduce the
problem size. (Otherwise at kb ¼ 26:6 the problem could not be run on the PC because there was not sufficient
memory.) Hence for this benchmark test case L ¼ 0:55m and l ¼ 0:4m, instead of the actual values listed in
Table 1.

Fig. 15 shows a comparison of the azimuthal modal sound power levels at full and model scale, with
different splice widths from s ¼ 20 to 60mm. Note that all the results have been corrected so that, at the fan
plane, the sound power level of mode ðB; 1Þ is the same at model and full scale. It is seen that at the exit plane
the predicted values of the sound power level at full and model scale are in close agreement. The best
agreement is at full-scale azimuthal mode orders m ¼ 24 (i.e. m ¼ B) and m ¼ 0. The close agreement at
m ¼ B indicates that the change in impedance used at full and model scale, i.e. Z! Z%, has led to a realistic
attenuation of azimuthal mode m ¼ B being calculated at model scale.

In general, the predicted sound power levels of the non-rotor-alone azimuthal mode orders ðmaBÞ are a
little higher at full scale than at model scale. This is not surprising because one of the key differences, between
the full- and model-scale problem, is that at model scale there are fewer cut-on modes. Therefore, energy is
scattered into less modes at model scale. Although there are small differences between the absolute levels of
the two sets of results, both the full- and model-scale results show the same variation with changes in splice
width.

In Table 6, a comparison of the predicted sound power transmission losses at full and model scale, with
different splice widths, is listed. The predicted values of DPWL at full and model scale are in close agreement.
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Table 6

Benchmark example. Variation in sound power transmission loss with splice width

Splice width (mm) DPWL (dB)

Full scale Model scale

20 20.7 20.0

30 20.4 19.8

40 19.9 19.6

50 19.3 19.2

60 18.7 18.8
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Finally, it is interesting to compare, at the cut-back fan speed, the model-scale results shown in Fig. 10 with
the benchmark example shown in Fig. 15. In the benchmark example, the duct length L and liner length l that
is used, are only half their actual lengths. However, it can be seen that the sound power levels of azimuthal
mode orders m ¼ 16; 12; 8; 4 and 0 are quite similar in both sets of results, even though two different liner
lengths are used. The length of the acoustic liner seems to have little affect on these modes, because they are
well cut-on. Therefore, unless these scattered modes can be absorbed, the sound power transmission loss will
be limited by these poorly attenuated modes; increasing the length of the liner may not lead to a significant
increase in DPWL. However, at this low supersonic fan speed, reducing the splice width will increase DPWL

because this will reduce the sound power levels of the non-rotor-alone scattered modes.
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